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Abstract
We propose a possible answer to one of the most exciting open questions in
physics and cosmology, that is, the question why we seem to experience four-
dimensional spacetime with three ordinary and one time dimensions. Making
assumptions (such as particles being in first approximation massless) about
the equations of motion, we argue for restrictions on the number of space and
time dimensions. Accepting our explanation of the spacetime signature and the
number of dimensions would be a point supporting (further) the importance of
the ‘internal space’.

PACS numbers: 04.50.+h, 11.10.Kk, 11.30.−j, 12.10.−g

1. Introduction

There are many experiences, prejudices so deeply embedded in our language and way of
thinking, and so strongly connected with the idea that we have just one time dimension, that
they could be used as arguments for such an idea, like the argument that the ordering ‘before’
and ‘after’ makes sense presupposing that there is just one time dimension. However, all these
concepts and prejudices and experiences do not constitute a genuine explanation of why we
were placed into just such a world. The main point of the present work is to discuss a more
microphysical explanation for features of the numbers of space and time dimensions [1–17] by
associating these numbers with properties of the equations—‘equations of motion’—obeyed
by the fields of the elementary particles, especially involving what we can call the ‘internal
space’, by which we mean the space of spins and charges so that we can think of all the different
particles, which are fermions—such as quarks and leptons (and equivalently for bosons), as
being different internal states of the same particle.

Theories of strings and membranes [18] and Kaluza–Klein-like theories [19] (as well as the
approach by one of us [20–22], which unifies spins and charges in the space of anticommuting
coordinates and predicts the connection between the spacetime dimension and the internal
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degrees of freedom) predict initially more-than-four-dimensional spacetime. If this is true,
how and when did our Universe in its evolution choose the Minkowski metric, and when and
in which way did it ‘decide’ to (‘mostly’) manifest in four-dimensional spacetime out of a
d-dimensional one, which could be any, even infinite?

(i) In this paper we answer the question of how the internal space may result in restrictions
on the choice of the signature of spacetime in any d-dimensional space, assuming that
the equations of motion operator exists (at least one) which is Hermitian, linear in the
d-momentum pa and has the eigenvectors in the internal space within the irreducible
representation of the Lorentz group. All these assumptions seem very mild: in standard
quantum mechanics, Hermiticity of the Hamiltonian and thereby of the equations of
motion operator guarantees a real value for the energy, unitarity in the time-development
of a system and conservation of probability. It has been proved [23] that in even-
dimensional spaces massless particles, respecting the Poincaré symmetry, obey equations
of motion which are linear in the pa-momentum. Siegel and Zwiebach 1987 [24] inform
us that, starting from conformal symmetry, they came to the same conclusion for any
dimension. The requirement that solutions of the equations of motion operator should
be a linear superposition of the minimum number of basic states of the Lorentz group
possibly leads to a choice of operators which the operator of equations of motion should
commute with. We select in this paper the operator of handedness, which is the Casimir
of the Lorentz group in any dimensional space. Massless particles, obeying the equations
of motion, are in any dimensional space either left- or right-handed. (In [25], we also
made a choice of the antilinear operators of charge conjugation, leading to Majoranas
and quaternions.) Handedness seems to play a fundamental role in Nature: one of the
assumptions of the standard model, dictated by experiment, is that only massless spinors
of left-handedness carry a weak charge, while right-handed fermions are weak chargeless.
Because of this property, spinors remain (almost) massless on the Planck scale. In other
words, the Dirac equation for massive particles can only have solutions within the space
of left- and right-handed states in (1 + 3)-dimensional space. According to the standard
model, spinors receive small (observable) masses by interacting with the Higgs fields,
which (by assumption) give the weak charge to the right-handed particles and accordingly
also enable masses of the order of only the weak scale. This is known as the mass
protection mechanism.

(ii) In this paper we draw attention to a fascinating property that the mass protection
mechanism only occurs in even-dimensional spaces. In odd-dimensional spaces, solutions
of equations of motion span the same space for massless particles as they do for massive
particles [26]. Therefore, the procedure of excluding part of the Hilbert space does
not work, and accordingly no mass protection mechanism can occur. All spinors could
accordingly acquire large masses—say the Planck mass. No interaction with, for instance,
the Higgs is required to assure them a mass. But we also have no reason to believe that this
mass is a very small one in comparison with the Planck scale. Spinors in odd-dimensional
spaces could be invisible at ‘low’—experimentally accessible—energies.

(iii) In this paper we argue that the stability of the equations of motion against a possible
break of the Lorentz invariance privileges four-dimensional space (in addition to the
two-dimensional one). (We are not saying that other dimensions are completely
excluded.)

We consider only free (non-interacting) fields. Apart from momentum degrees of freedom,
we also consider spin degrees of freedom and, for the sake of simplicity and transparency of
presentation of our proofs and of the consequences of the proofs, we treat only spinors.
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For a general case of any spin, the reader should see [4]. We would, however, like to
point out that, using the Bargmann–Wigner (1934) prescription [27], any spin state can be
constructed out of spinor states and accordingly all the requirements regarding the signature of
the metric presented for spinors should be in agreement with the requirements of all other spin
particles.

The ‘working hypotheses’ of the paper is that the fundamental space is d-dimensional,
with d being any integer number, perhaps even infinite. In this paper we seek arguments
which might have ‘led’ Nature to ‘end up’ with (‘mostly’, that is effectively,) four-dimensional
spacetime, with one time and three space dimensions. We do not discuss any mechanism which
would lead from some large (or even infinite) dimension down to four dimensions. Such a
mechanism is certainly needed in theories such as string theories and Kaluza–Klein theories,
as well as in the approach taken by one of us, which assumes that spins in d-dimensional space
manifest in four-dimensional subspace as spin and all the known charges. We also do not
claim that the proposed assumptions and their argued consequences are the only reasons for
the ‘chosen’ dimension and signature of our observed world. But since the assumptions are
rather mild ones, we expect the conclusions of this paper to be valid for any theory. Although
we treat only massless non-interacting fields (of any spin), we expect that interactions among
fields will not alter the conclusions, at least not for those types of interactions which can be
switched on perturbatively. Further assumptions could, of course, further limit the allowed
signatures.

2. Equations of motion

Massless spinors, if they preserve the Poincaré symmetry, obey equations of motion, which
are linear in the momentum d-vector as proved in [23, 24]. We shall use somewhat generalized
equations of motion of the type

(f a(Scd)pa)|ψ〉 = 0 (1)

with a = 0, 1, 2, 3, 5, . . . , d , where f a is for each a any function of the generators of the
Lorentz transformations Sab in the internal space of spin degrees of freedom.

We, however, do not require that equation (1) is the only one that a spinor field must obey.
The total generators of the Lorentz transformations would read Mab = Lab + Sab, with

Lab = xapb − xbpa , which is the generator of the Lorentz transformations in ordinary
space. In order for the equations of motion operator to be linear in pa, f a can depend
only on Sab, that is on ‘internal space’. Both Lab and Sab, as well as their sum, fulfil
the Lorentz algebra: [Mab,Mcd]− = −i(ηacMbd + ηbdMac − ηadMbc − ηbcMad), where
ηab = diag{η00, η11, . . . , ηdd} is a (not yet specified) metric tensor with (ηaa)2 = 1, for each
a. (In four-dimensional space the two well-known linear equations of motion in the momentum
for free fields are the Dirac (or equivalently the Weyl) equation for spin 1

2 fermions (spinors)
and the Maxwell equations for gauge Yang–Mills of spin 1 fields.)

Since this paper considers only spinors, the generators Sab, which for spinors also
fulfil the equation {Sab, Sac}+ = 1

2ηaaηbc, can be expressed in terms of the operators
γ a, a = 0, 1, 2, 3, 5, . . . , d (operating again in ‘internal space’) fulfilling the Clifford algebra

{γ a, γ b}+ := γ aγ b + γ bγ a = 2ηab (2)

as follows

Sab = i

4
[γ a, γ b]− := i

2
{γ aγ b − ηab}. (3)
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The generalized linear equations can then be written in the form

D(γ b)γ apa = 0. (4)

(The reader should recall that the Dirac equation for massless spinors is usually written in the
form γ apa = 0.) The Hermiticity condition reads

γ a†(D(γ b))† = D(γ b)γ a (5)

since the operator pa is a Hermitian one, if the usual inner product in ordinary space is
assumed. The requirement of Hermiticity without allowing for an extra internal space matrix
D(γ b) would be too strong a requirement. Performing Hermitian conjugation of equation (2)
and requiring that the inner product of a ket γ a|ψ〉 and a bra (γ a|ψ〉)† has to have the same
value as 〈ψ|ψ〉 which leads to the unitarity condition γ a†γ a = I , for any a, we find

γ a† = ηaaγ a (6)

and accordingly Sab† = ηaaηbbSab. According to equations (6) and (5) the Hermiticity
condition for the equations of motion operator reads:

(D(γ b))† = γ aD(γ b)γ a for each a. (7)

We define, according to [21, 23], the operator �, which in even-dimensional spaces determines
the handedness of states for any spin. In this paper we shall express the operator of handedness
in terms of γ a , since we treat only spinors (� is for d = 4 and for spinors known as γ 5). It
then has meaning for any dimensional space:

� =
∏
a

(
√

ηaaγ a)

{
(i)

d
2 for d even

(i)
d−1

2 for d odd
(8)

and the product of γ a is assumed to be in the rising order with respect to index a. We chose
the phase such that the operator � is Hermitian and its square is the unit operator

�+ = � �2 = I. (9)

We then easily find that

{�, γ a}± =
{

0 for + sign and d even
0 for − sign and d odd

(10)

and that � is a Casimir of the Lorentz group, i.e. {�, Sab}− = 0.

3. Reducibility of representations

Equations (4) and (7) concern the linearity and Hermiticity requirements for the operator of
equations of motion. Only the reducibility has, according to our assumptions, yet to be taken
into account. Since we assume the operator of handedness to take care of reducibility, we
accordingly require that the operator of equations of motion and the operator of handedness
commute

{�,Dγ apa}− = {�,Dγ a}− = 0. (11)

The last equation has to be fulfilled for each a. We multiply this equation from the left by
� and take into account the properties of � (�+ = � and �2 = I , equation (9)). It follows
then, if we also take into account equation (10) (which states that in even-dimensional spaces
� anticommutes with γ a , while in odd-dimensional spaces they commute) that

Dγ a + �−1D�γ a = 0 for d even,

Dγ a − Dγ a = 0 for d odd.
(12)
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We conclude that in odd-dimensional spaces the reducibility requirement leads to no
limitation whatsoever on the signature of the metric. We find that �−1D� =
(γ d)−1(γ d−1)−1 · · · (γ 0)−1Dγ 0 · · · γ d−1γ d . Using (7) and its Hermitian conjugate (D =
γ aD†γ a) we find by repetition that �−1D� = D

∏
aη

aa . In order to fulfil equation (12) for
even d it follows that

∏
aη

aa = −1.

In even-dimensional spaces the requirement is severe: solutions of equations of motion
can only have well-defined handedness in spaces of odd-time and odd-space signatures. In a
four-dimensional space it means that only one time and three space signature is possible (or
the reverse, although this is not important, as the overall sign is not important).

In four dimensions our result, q being odd, means that we must have either three time
dimensions and one space dimension or, as we know, we have the reverse.

4. Massless and massive solutions and the mass protection mechanism

We shall prove that the so-called mass protection mechanism occurs only in even-dimensional
spaces. To prove this, we look at the properties wrt irreducibility of an equation of motion
operator with a mass term as follows:

(γ apa − m)|ψ〉 = 0. (13)

This is for d equal to four and for the Minkowski metric the well-known Dirac equation, with
an operator which is not Hermitian. If we want the operator to be Hermitian, we multiply it
by an appropriate matrix D as above (which in the Dirac equation case is γ 0). We assume
the equation to be valid for any dimension d. Of course, for the mass protection discussion
we cannot retain the assumption of linearity, since the mass term is obviously not linear in
momentum. However, we do insist on the irreducibility assumption. Let us check whether
the irreducibility requirement is at all possible with the mass term added. We use the fact that
irreducible representations are obtained for the Dirac equation by projection with matrices
1
2 (1 ± �) where � is given by (8), i.e. we restrict the state space of the Dirac equation for any
d and any signature to those states that obey

D(γ apa − m) 1
2 (1 − �)|ψ〉 = 0 (14)

�|ψ〉 = |ψ〉 say, so that |ψ〉 = 1
2 (1 − �)|ψ〉.

For the projected Dirac equation to be irreducible, we must require that the equation
(14) maps into the same subspace to which 1

2 (1 − �)|ψ〉 belongs. The requirement of these
operators mapping onto the space projected by 1

2 (1 − �) can be expressed by the requirement
that projection by the projection operator 1

2 (1 + �) on the orthogonal space will give zero
regardless of the state |ψ〉. We accordingly require

1
2 (1 + �)D(γ apa − m) 1

2 (1 − �) = 0 (15)

for all values of pa , on the operator level (which means that equation (15) is not the equation
of motion here) which leads to

[�,Dm] = 0 and [�,Dγ a] = 0. (16)

Combining these two equations with equation (10) we see that it is impossible to be satisfied
in even dimensions d. In even dimensions the requirement of irreducibility prevents the
mass term occuring since the only way out is to take the mass m = 0. In the case of odd
dimensions, any mass is allowed even after �-projection. This prevention of mass—in even
d—is what is called mass protection, in the sense that a theory, if arranged in such a way
that its symmetries (charges etc) enforce only the �-projected state space to be used, then
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that theory can explain why the particles in question are massless, since a theory does not
allow solutions of the equations of motion for massive spinors to exist, because the part of
the space which has opposite handedness is missing. In the standard model (see [28]) the
Weinberg–Salam–Higgs field at the end gives (by ‘hand’) most fermions a ‘little’ mass by
breaking the gauge symmetries which caused the mass protection.

In odd dimensions d, however, it is not possible to prevent spinors from acquiring a mass,
because non-zero mass is allowed even when the �-projection is performed: the massive
and massless Dirac equations have solutions within the same space of states. (Only the
coefficients change but none of the states disappear.) Taking the point of view that all
parameters, say the mass, not forbidden are present with a scale of size given by an order of
magnitude of a fundamental scale assumed to be very big—say the Planck scale—compared
to energies per particle accessible in practice, we conclude that in odd dimensions all spin
one-half particles will for practical purposes acquire such large masses that they effectively
cannot be observed. So odd dimensions deviate from even ones by typically having all the
masses of the fundamental scale, while in even dimensions the mass protection mechanism is
possible .

5. Stability of the equations of motion leading to dimensions being at most four

We shall add to our assumptions about the equations of motion operator in sections 2 and 3 the
requirement that the equations of motion should be stable in the sense that if we infinitesimally
destroy the Lorentz invariance by adding a small extra term still obeying the other assumptions,
this term would in reality not disturb the equations of motion in the following sense: we can
transform it away by shifting the coordination of the momentum pa and changing the metric
tensor ηab into a new set of values. This argumentation is really a rewriting of the old argument
of ‘random dynamics’ of one of us [8].

Let us in fact imagine that the equations of motion (4) with abstract notation f a = Dγ a

are modified slightly from f apa|ψ〉 = 0 into

(f a + f ′a)pa|ψ〉 = 0. (17)

Can we then pretend that this new equation is indeed just of the same form as before, but with
slightly changed notation for the way one expands the momentum on the basis vectors and the
metric tensor gab known from general relativity? In other words, can we write the modified
equations in a slightly more general form by changing the basis for the d-momentum pa

gabfapb|ψ〉 = 0? (18)

By counting degrees of freedom, we see that this could only be the case for a general
modification term f ′apa provided we have at most four dimensions, i.e. it is at least needed
that d � 4.

This counting goes as follows: the number of degrees of freedom of the extra term f ′apa

is that of d matrices with the number of columns and rows equal to the dimension of the
irreducible representation of the ‘Weyl’, which is 2d/2−1 for an even dimension d and 2(d−1)/2

for an odd dimension d. Altogether, this means that the number of real parameters in the
modification is d · 2d−2 for even and d · 2d−1 for odd d. These modification parameters should
be compensated by d(d + 1)/2 parameters in the metric tensor gab (or ηab) and d(d − 1)/2
parameters associated with making a Lorentz transformation of the basis for the d-momentum
pa. We need accordingly the inequality

d(d + 1)/2 + d(d − 1)/2 � d · 2d−2 (19)
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for even d, and

d(d + 1)/2 + d(d − 1)/2 � d · 2d−1 (20)

for odd d. These equations reduce to d � 2d−2 and d � 2d−1 for even and odd d respectively.
Thus we must for even d have d � 4, while for odd d only d = 1 satisfies the inequality.

Accordingly, this stability requirement can only work for d = 1, 2 and 4 dimensions.

5.1. Almost inconsistency concerning Lorentz invariance

We have to admit that with the requirement that the equations of motion should be stable
against an infinitesimal destruction of the Lorentz invariance just discussed, we are a priori
really assuming an inconsistency with respect to the fact that in the rest of the paper the
Lorentz invariance has been assumed. (We are grateful to the referee for pointing out this
problem.) There is, however, strictly speaking the little loophole that Lorentz invariance could
be a non-valid principle at the fundamental level, but that it would nevertheless come out
phenomenologically at some low energy level or under special conditions. This is in fact the
idea which one of us has speculated in [5] and in some of the related references [5–9]. Further
developments of this type of hope of Lorentz invariance and also other symmetries coming
out by themselves can be found in the collection of papers [13], where we seek to justify that
the Lorentz invariance can be hoped to come out sufficiently accurately when built into the
gravity theory.

6. Conclusion

In this paper we sought arguments which might have ‘guided’ Nature to ‘mostly’ (effectively)
manifest in four-dimensional ordinary space, with one time and three space coordinates, in
addition to the ‘internal space’ of spins and charges. We argued that it is the ‘internal space’
which forced Nature to ‘make a choice’ of d equal four, if rather mild assumptions about the
properties of the operator of equations of motion for spinors are the meaningful ones we believe
they are. (Further assumptions would further limit possible signatures in d-dimensional space.
While a somewhat relaxed stability assumption could tell, for example, why spin degrees of
freedom in higher than four dimensions might demonstrate as (conserved) charges in four-
dimensional spacetime.) These mild assumptions lead to various predictions concerning the
spacetime dimensions. The five assumptions which we used were:

(1) linearity in momentum,
(2) Hermiticity,
(3) irreducibility,
(4) mass protection,
(5) stability.

We proved that, if we apply assumptions (1), (2) and (3) in even-dimensional spaces,
only odd-time and odd-space dimensions are possible, while in odd-dimensional spaces all
signatures are possible. However, while in even-dimensional spaces limitation to only one
irreducible representation, for example left handedness, enables fermions to remain massless,
this is not true for odd-dimensional spaces, since the solutions for a massless and a massive
case span the same space. So applying assumption (4) we exclude an odd number of space
plus time dimensions.

Applying assumptions (1), (2), (3) and (5), we concluded that the total dimension should
be 1, 2 or 4. Taking account of assumption (4), we exclude d = 1 and using the odd-time and
odd-space dimensions we finally obtain from all our five assumptions only the time–space
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dimensions 1 + 1 or 1 + 3 (or the opposite). This is thus close to explaining the experimental
numbers 1 + 3.

We understand the time-space dimension 1 + 3 as an effective dimension.
Further studies along these lines might involve consideration of different kinds of

representations, such as Majoranas (the paper by the two authors of this paper, entitled
‘The internal space is making the choice of the signature of spacetime’, which also considers
Majoranas, is almost ready for publication), which are representations with real coefficients
(i.e. using the field of real numbers). However, it turns out that these kinds of representations
have no mass protection mechanism either, and the corresponding fields are accordingly
invisible at low energies.

This paper treats only free (non-interacting) fields of any spin in d-dimensional space of
any signature and any d. However, we expect that interactions among fields will not alter
the conclusions of this paper, that is they do not result in additional limitations on possible
signatures, if only those types of interactions which can be switched on perturbatively are
assumed.

Allowing any dimension d with ordinary and spin degrees of freedom, we only look
for properties of equations of motion (we treated one equations of motion operator, but we
do not require at all that it must be only one), which could possibly be responsible for
four ordinary effective (detectable) dimensions—in addition to ‘internal space’. We did not
consider mechanisms, which could have brought d ordinary (and internal) dimensions to
four effective dimensions, or the possibility (proposed by the approach of one of the authors
[20–22] of this paper) that spins of higher than four dimensions are responsible for charges in
the effective (1 + 3)-dimension. We also do not comment on where the limitation that only
states of one handedness (which leads to the mass protection mechanism for even-dimensional
spaces) could come from or where the assumption that the Higgs mechanism brings the weak
charge to right-handed spinors and accordingly enables masses to spinors on some (weak)
scale, comes from.

(By the number of times we have here meant the number of dimensions with a certain
signature of the metric. But there is another way in which one could define something that with
some right could be called the number of time dimensions—namely, the number of equations.
One could consider more than one equation of motion per field component. In the present
paper we indeed discuss only one equation of motion operator per field component. And this
could be understood in this sense that we did already assume indirectly only one time. But we
have never required at all that the discussed equations of motion operator is the only one that
fields must be the eigenfields of. If we would require only one equation of motion operator,
it could have in this different sense be assumed just one time dimension. This comment
concerns indeed the unitarity (or antiunitarity) properties of the non-compact Lorentz group
for any non-Euclidean signature and accordingly the definition of the inner product, which
for the 1 + 3, and equivalently also for the 1 + d − 1, case resembles 〈ψ|γ 0ψ〉. In this paper,
we leave the problem of a possible definition of the inner product for the case of more than
one time coordinate open—we could namely for q + (d − q), with q time-like coordinates,
define the inner product as 〈ψ|Oψ〉, with O proportional to the product of all the γ a with
time-like signature. Only if one accepts that not more than one equation of motion operator
for each field component exists and the inner product with γ 0 is accepted, could one say that
we put in a different meaning that here we have just one and thus especially an odd number
of times.)

Yet the results of our conclusions, if the (rather mild) assumptions can be taken seriously
(which we believe they should), are conclusive. They are also restrictive for theories with
additional degrees of freedom, such as string theories and Kaluza–Klein theories.
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